
Package: ambient (via r-universe)
October 7, 2024

Type Package

Title A Generator of Multidimensional Noise

Version 1.0.2.9000

Maintainer Thomas Lin Pedersen <thomasp85@gmail.com>

Description Generation of natural looking noise has many application
within simulation, procedural generation, and art, to name a
few. The 'ambient' package provides an interface to the
'FastNoise' C++ library and allows for efficient generation of
perlin, simplex, worley, cubic, value, and white noise with
optional perturbation in either 2, 3, or 4 (in case of simplex
and white noise) dimensions.

License MIT + file LICENSE

Encoding UTF-8

SystemRequirements C++11

Depends R (>= 3.0.2)

Imports rlang, grDevices, graphics, stats

LinkingTo cpp11 (>= 0.4.2)

RoxygenNote 7.2.1

Roxygen list(markdown = TRUE)

URL https://ambient.data-imaginist.com,

https://github.com/thomasp85/ambient

BugReports https://github.com/thomasp85/ambient/issues

Suggests covr

Repository https://thomasp85.r-universe.dev

RemoteUrl https://github.com/thomasp85/ambient

RemoteRef HEAD

RemoteSha e561160d71da036da0b0ea189a1736e3b3c54a09

1

https://ambient.data-imaginist.com
https://github.com/thomasp85/ambient
https://github.com/thomasp85/ambient/issues

2 ambient-package

Contents
ambient-package . 2
billow . 3
clamped . 4
curl_noise . 4
fbm . 6
fracture . 7
gen_checkerboard . 8
gen_spheres . 9
gen_waves . 10
gradient_noise . 11
long_grid . 12
modifications . 13
noise_blue . 14
noise_cubic . 15
noise_perlin . 16
noise_simplex . 18
noise_value . 20
noise_white . 21
noise_worley . 22
ridged . 25
trans_affine . 26

Index 28

ambient-package ambient: A Generator of Multidimensional Noise

Description

Generation of natural looking noise has many application within simulation, procedural generation,
and art, to name a few. The ’ambient’ package provides an interface to the ’FastNoise’ C++ library
and allows for efficient generation of perlin, simplex, worley, cubic, value, and white noise with
optional perturbation in either 2, 3, or 4 (in case of simplex and white noise) dimensions.

Author(s)

Maintainer: Thomas Lin Pedersen <thomasp85@gmail.com> (ORCID)

Authors:

• Jordan Peck (Developer of FastNoise)

References

https://github.com/Auburn/FastNoiseLite

https://orcid.org/0000-0002-5147-4711
https://github.com/Auburn/FastNoiseLite

billow 3

See Also

Useful links:

• https://ambient.data-imaginist.com

• https://github.com/thomasp85/ambient

• Report bugs at https://github.com/thomasp85/ambient/issues

billow Billow (cloud-like, lumpy) fractal

Description

The billow fractal is a slight modification of the fbm() fractal. Before adding the new layer onto
the last, the new layer is modified by taking the absolute value, multiplying by 2, and subtracting
one. The result is that the new value will not contain negative values and so will always add on top
of the old values. This function is intended to be used in conjunction with fracture()

Usage

billow(base, new, strength, ...)

Arguments

base The prior values to modify

new The new values to modify base with

strength A value to modify new with before applying it to base

... ignored

See Also

Other Fractal functions: clamped(), fbm(), ridged()

Examples

grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))

grid$simplex <- fracture(gen_simplex, billow, octaves = 8, x = grid$x,
y = grid$y)

plot(grid, simplex)

https://ambient.data-imaginist.com
https://github.com/thomasp85/ambient
https://github.com/thomasp85/ambient/issues

4 curl_noise

clamped Clamped fractal

Description

This fractal is a slight variation of fbm() fractal. Before adding the new octave to the cumulated
values it will clamp it between a minimum and maximum value. This function is intended to be
used in conjunction with fracture()

Usage

clamped(base, new, strength, min = 0, max = Inf, ...)

Arguments

base The prior values to modify

new The new values to modify base with

strength A value to modify new with before applying it to base

min, max The upper and lower bounds of the noise values

... ignored

See Also

Other Fractal functions: billow(), fbm(), ridged()

Examples

grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))

grid$simplex <- fracture(gen_simplex, clamped, octaves = 8, x = grid$x,
y = grid$y)

plot(grid, simplex)

curl_noise Generate curl noise

Description

One of the use cases for fractal noise is to simulate natural phenomena. perlin/simplex noise are
e.g. often used to create flow fields, but this can be problematic as they are not divergence-free
(particles will concentrate at sinks/gutters in the field). An approach to avoid this is to take the curl
of a field instead. The curl operator is ensured to produce divergence-free output, when supplied
with continuous fields such as those generated by simplex and perlin noise. The end result is a field
that is incompressible, thus modelling fluid dynamics quite well.

curl_noise 5

Usage

curl_noise(
generator,
x,
y,
z = NULL,
...,
seed = NULL,
delta = NULL,
mod = NULL

)

Arguments

generator The noise generating function, such as gen_simplex, or fracture()

x, y, z The coordinates to generate the curl for as unquoted expressions

... Further arguments to generator

seed A seed for the generator. For 2D curl the seed is a single integer and for 3D curl
it must be a vector of 3 integers. If NULL the seeds will be random.

delta The offset to use for the partial derivative of the generator. If NULL, it will be
set as 1e-4 of the largest range of the dimensions.

mod A modification function taking the coordinates along with the output of the
generator call and allow modifications of it prior to calculating the curl. The
function will get the coordinates as well as a value holding the generator output
for each coordinate. If the curl is requested in 2D the value will be a numeric
vector and mod() should return a numeric vector of the same length. IF the curl
is requested in 3D the value is a list of three numeric vectors (x, y, and z) and
mod() should return a list of three vectors of the same length. Passing NULL
will use the generator values unmodified.

References

Bridson, Robert. Hourihan, Jim. Nordenstam, Marcus (2007). Curl-noise for procedural fluid flow.
ACM Transactions on Graphics 26(3): 46. doi:10.1145/1275808.1276435.

See Also

Other derived values: gradient_noise()

Examples

grid <- long_grid(seq(0, 1, l = 100), seq(0, 1, l = 100))

Use one of the generators
grid$curl <- curl_noise(gen_simplex, x = grid$x, y = grid$y)
plot(grid$x, grid$y, type = 'n')
segments(grid$x, grid$y, grid$x + grid$curl$x / 100, grid$y + grid$curl$y / 100)

6 fbm

If the curl of fractal noise is needed, pass in `fracture` instead
grid$curl <- curl_noise(fracture, x = grid$x, y = grid$y, noise = gen_simplex,

fractal = fbm, octaves = 4)
plot(grid$x, grid$y, type = 'n')
segments(grid$x, grid$y, grid$x + grid$curl$x / 500, grid$y + grid$curl$y / 500)

fbm Fractional Brownian Motion fractal

Description

This is the archetypal fractal used when generating perlin noise. It works simply by adding succes-
sive values together to create a final value. As the succesive values are often calculated at increasing
frequencies and the strength is often decreasing, it will create the impression of ever-smaller details
as you zoom in. This function is intended to be used in conjunction with fracture()

Usage

fbm(base, new, strength, ...)

Arguments

base The prior values to modify

new The new values to modify base with

strength A value to modify new with before applying it to base

... ignored

See Also

Other Fractal functions: billow(), clamped(), ridged()

Examples

grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))

grid$simplex <- fracture(gen_simplex, fbm, octaves = 8, x = grid$x, y = grid$y)
plot(grid, simplex)

fracture 7

fracture Create fractals of a noise or pattern

Description

This function allows you to create fractals of a given noise or pattern generator by calculating it
repeatedly at changing frequency and combining the results based on a fractal function.

Usage

fracture(
noise,
fractal,
octaves,
gain = ~./2,
frequency = ~. * 2,
seed = NULL,
...,
fractal_args = list(),
gain_init = 1,
freq_init = 1

)

Arguments

noise The noise function to create a fractal from. Must have a frequency argument.

fractal The fractal function to combine the generated values with. Can be one of the
provided ones or a self-made function. If created by hand it must have the
following arguments:

• base: The current noise values
• new: The new noise values to combine with base

• strength: The value from gain corresponding to the index of new
• octave: The index of new

And must return a numeric vector of the same length as new

octaves The number of generated values to combine

gain The intensity of the generated values at each octave. The interpretation of this
is up to the fractal function. Usually the intensity will gradually fall as the
frequency increases. Can either be a vector of values or a (lambda) function that
returns a new value based on the prior, e.g. ~ . / 2. The default is often a good
starting point though e.g. ridged() fractal has been designed with a special
gain function.

frequency The frequency to use at each octave. Can either be a vector of values or a
function that returns a new value based on the prior. See gain.

seed A seed for the noise generator. Will be expanded to the number of octaves so
each gets a unique seed.

8 gen_checkerboard

... arguments to pass on to generator

fractal_args Additional arguments to fractal as a named list
gain_init, freq_init

The gain and frequency for the first octave if gain and/or frequency are given
as a function.

See Also

ambient comes with a range of build in fractal functions: fbm(), billow(), ridged(), clamped()

Examples

grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))

When noise is generated by it's own it doesn't have fractal properties
grid$clean_perlin <- gen_perlin(grid$x, grid$y)
plot(grid, clean_perlin)

Use fracture to apply a fractal algorithm to the noise
grid$fractal_perlin <- fracture(gen_perlin, fbm, octaves = 8,

x = grid$x, y = grid$y)
plot(grid, fractal_perlin)

gen_checkerboard Generate a checkerboard pattern

Description

This generator supplies 0 or 1 value depending on the provided coordinates position on a checker-
board. The frequency determines the number of squares per unit.

Usage

gen_checkerboard(x, y = NULL, z = NULL, t = NULL, frequency = 1, ...)

Arguments

x, y, z, t The coordinates to get pattern from

frequency The frequency of the generator

... ignored

Value

A numeric vector

See Also

Other Pattern generators: gen_spheres(), gen_waves()

gen_spheres 9

Examples

grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))
grid$chess <- gen_checkerboard(grid$x, grid$y)

plot(grid, chess)

gen_spheres Generate a pattern of concentric spheres

Description

This generator creates a pattern of concentric circles centered at 0. Depending on how many dimen-
sions you supply it can be used to generate cylinders and circles as well. The output value is the
shortest distance to the nearest sphere normalised to be between -1 and 1. The frequency determines
the radius multiplier for each unit sphere.

Usage

gen_spheres(x, y = NULL, z = NULL, t = NULL, frequency = 1, ...)

Arguments

x, y, z, t The coordinates to get pattern from

frequency The frequency of the generator

... ignored

Value

A numeric vector

See Also

Other Pattern generators: gen_checkerboard(), gen_waves()

Examples

grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))
grid$circles <- gen_spheres(grid$x, grid$y)
grid$cylinders <- gen_spheres(grid$x)

plot(grid, circles)
plot(grid, cylinders)

10 gen_waves

gen_waves Generate a wave pattern

Description

This generator generates multidimensional waves based on cos to the distance to the center. This
means that you can create ripple waves or parallel waves depending on how many dimensions you
provide. The output is scaled between -1 and 1 and the frequency determines the number of waves
per unit. The result is much like gen_spheres() but has smooth transitions at each extreme.

Usage

gen_waves(x, y = NULL, z = NULL, t = NULL, frequency = 1, ...)

Arguments

x, y, z, t The coordinates to get pattern from

frequency The frequency of the generator

... ignored

Value

A numeric vector

See Also

Other Pattern generators: gen_checkerboard(), gen_spheres()

Examples

grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))
grid$ripple <- gen_waves(grid$x, grid$y)
grid$wave <- gen_waves(grid$x)

plot(grid, ripple)
plot(grid, wave)

gradient_noise 11

gradient_noise Calculate the gradient of a scalar field

Description

The gradient of a scalar field such as those generated by the different noise algorithms in ambient
is a vector field encoding the direction to move to get the strongest increase in value. The vectors
generated have the properties of being perpendicular on the contour line drawn through that point.
Take note that the returned vector field flows upwards, i.e. points toward the steepest ascend, rather
than what is normally expected in a gravitational governed world.

Usage

gradient_noise(
generator,
x,
y,
z = NULL,
t = NULL,
...,
seed = NULL,
delta = NULL

)

Arguments

generator The noise generating function, such as gen_simplex, or fracture()

x, y, z, t The coordinates to generate the gradient for as unquoted expressions

... Further arguments to generator

seed A seed for the generator.

delta The offset to use for the partial derivative of the generator. If NULL, it will be
set as 1e-4 of the largest range of the dimensions.

See Also

Other derived values: curl_noise()

Examples

grid <- long_grid(seq(0, 1, l = 100), seq(0, 1, l = 100))

Use one of the generators
grid$gradient <- gradient_noise(gen_simplex, x = grid$x, y = grid$y)
plot(grid$x, grid$y, type = 'n')
segments(grid$x, grid$y, grid$x + grid$gradient$x / 100, grid$y + grid$gradient$y / 100)

12 long_grid

long_grid Create a long format grid

Description

This function creates a 1-4 dimensional grid in long format, with the cell positions encoded in the
x, y, z, and t columns. A long_cell object is the base class for the tidy interface to ambient, and
allows a very flexible approach to pattern generation at the expense of slightly lower performance
than the noise_* functions that maps directly to the underlying C++ code.

Usage

long_grid(x, y = NULL, z = NULL, t = NULL)

grid_cell(grid, dim, ...)

S3 method for class 'long_grid'
as.array(x, value, ...)

S3 method for class 'long_grid'
as.matrix(x, value, ...)

S3 method for class 'long_grid'
as.raster(x, value, ...)

slice_at(grid, ...)

Arguments

x, y, z, t For long_grid() vectors of grid cell positions for each dimension. The final
dimensionality of the object is determined by how many arguments are given.
For slice_at() an integer defining the index at the given dimension to extract.

grid A long_grid object

dim The dimension to get the cell index at, either as an integer or string.

... Arguments passed on to methods (ignored)

value The unquoted value to use for filling out the array/matrix

Examples

grid <- long_grid(1:10, seq(0, 1, length = 6), c(3, 6))

Get which row each cell belongs to
grid_cell(grid, 2) # equivalent to grid_cell(grid, 'y')

Convert the long_grid to an array and fill with the x position
as.array(grid, x)

modifications 13

Extract the first column
slice_at(grid, x = 1)

Convert the first column to a matrix filled with y position
as.matrix(slice_at(grid, x = 1), y)

modifications Simply value modifications

Description

Most modifications of values in a long_grid are quite simple due to the wealth of vectorised func-
tions avaliable in R. ambient provides a little selection of handy functions to compliment these

Usage

blend(x, y, mask)

normalise(x, from = range(x), to = c(0, 1))

normalize(x, from = range(x), to = c(0, 1))

cap(x, lower = 0, upper = 1)

Arguments

x, y Values to modify

mask A vector of the same length as x and y. Assumed to be between 0 and 1 (values
outside of this range is capped). The closer to 1 the more of x will be used and
the closer to 0 the more of y will be used

from The range of x to use for normalisation

to The output domain to normalise to

lower, upper The lower and upper bounds to cap to

Examples

grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))
grid$chess <- gen_checkerboard(grid$x, grid$y)
grid$noise <- gen_perlin(grid$x, grid$y)
grid$ripple <- gen_waves(grid$x, grid$y)

Blend two values based on a third
grid$mix <- blend(grid$noise, grid$ripple, grid$chess)
plot(grid, mix)

14 noise_blue

Cap values between 0 and 1
plot(grid, cap(noise))

noise_blue Blue noise generator

Description

Blue noise is a form of noise that has weak low-frequency. This means that it is devoid of larger
structures and can be blurred to an even gray. Blue noise in ambient is calculated using the popular
Void-and-cluster method developed by Ulichney. Calculating blue noise is much more computa-
tionally expensive than e.g. white noise so ambient does not provide a gen_blue() generator, only
the noise_blue() texture function. Computation time increases linearly with the number of pixels
in the texture and can get prohibitly long very soon. However, blue noise is tile-able so a good
suggestion is to try tiling e.g. a 64x64 texture to the desired dimensions and see if that suffices.

Usage

noise_blue(dim, sd = 10, seed_frac = 0.1)

Arguments

dim The dimensions (height, width, (and depth, (and time))) of the noise to be gen-
erated. The length determines the dimensionality of the noise.

sd The standard deviation of the gaussian filter to apply during the search for clus-
ters and voids.

seed_frac The fraction of pixels to seed the algorithm with during start

Value

For noise_white() a vector if length(dim) == 1, matrix if length(dim) == 2 or an array if
length(dim) >= 3.

References

R. A. Ulichney (1993). Void-and-cluster method for dither array generation. Proc. SPIE 1913,
Human Vision, Visual Processing, and Digital Display IV

Examples

Basic use
noise <- noise_blue(c(64, 64))

plot(as.raster(normalise(noise)))

noise_cubic 15

noise_cubic Cubic noise generator

Description

Cubic noise is a pretty simple alternative to perlin and simplex noise. In essence it takes a low
resolution white noise and scales it up using cubic interpolation. This approach means that while
cubic noise is smooth, it is much more random than perlin and simplex noise.

Usage

noise_cubic(
dim,
frequency = 0.01,
fractal = "fbm",
octaves = 3,
lacunarity = 2,
gain = 0.5,
pertubation = "none",
pertubation_amplitude = 1

)

gen_cubic(x, y = NULL, z = NULL, frequency = 1, seed = NULL, ...)

Arguments

dim The dimensions (height, width, (and depth)) of the noise to be generated. The
length determines the dimensionality of the noise.

frequency Determines the granularity of the features in the noise.

fractal The fractal type to use. Either 'none', 'fbm' (default), 'billow', or 'rigid-multi'.
It is suggested that you experiment with the different types to get a feel for how
they behaves.

octaves The number of noise layers used to create the fractal noise. Ignored if fractal
= 'none'. Defaults to 3.

lacunarity The frequency multiplier between successive noise layers when building fractal
noise. Ignored if fractal = 'none'. Defaults to 2.

gain The relative strength between successive noise layers when building fractal noise.
Ignored if fractal = 'none'. Defaults to 0.5.

pertubation The pertubation to use. Either 'none' (default), 'normal', or 'fractal'. De-
fines the displacement (warping) of the noise, with 'normal' giving a smooth
warping and 'fractal' giving a more eratic warping.

pertubation_amplitude

The maximal pertubation distance from the origin. Ignored if pertubation =
'none'. Defaults to 1.

x, y, z Coordinates to get noise value from

16 noise_perlin

seed The seed to use for the noise. If NULL a random seed will be used

... ignored

Value

For noise_cubic() a matrix if length(dim) == 2 or an array if length(dim) == 3. For gen_cubic()
a numeric vector matching the length of the input.

Examples

Basic use
noise <- noise_cubic(c(100, 100))

plot(as.raster(normalise(noise)))

Using the generator
grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))
grid$noise <- gen_cubic(grid$x, grid$y)
plot(grid, noise)

noise_perlin Perlin noise generator

Description

This function generates either 2 or 3 dimensional perlin noise, with optional pertubation and frac-
tality. Perlin noise is one of the most well known gradient noise algorithms and have been used
extensively as the basis for generating landscapes and textures, as well as within generative art. The
algorithm was developed by Ken Perlin in 1983.

Usage

noise_perlin(
dim,
frequency = 0.01,
interpolator = "quintic",
fractal = "fbm",
octaves = 3,
lacunarity = 2,
gain = 0.5,
pertubation = "none",
pertubation_amplitude = 1

)

gen_perlin(
x,
y = NULL,

noise_perlin 17

z = NULL,
frequency = 1,
seed = NULL,
interpolator = "quintic",
...

)

Arguments

dim The dimensions (height, width, (and depth)) of the noise to be generated. The
length determines the dimensionality of the noise.

frequency Determines the granularity of the features in the noise.

interpolator How should values between sampled points be calculated? Either 'linear',
'hermite', or 'quintic' (default), ranging from lowest to highest quality.

fractal The fractal type to use. Either 'none', 'fbm' (default), 'billow', or 'rigid-multi'.
It is suggested that you experiment with the different types to get a feel for how
they behaves.

octaves The number of noise layers used to create the fractal noise. Ignored if fractal
= 'none'. Defaults to 3.

lacunarity The frequency multiplier between successive noise layers when building fractal
noise. Ignored if fractal = 'none'. Defaults to 2.

gain The relative strength between successive noise layers when building fractal noise.
Ignored if fractal = 'none'. Defaults to 0.5.

pertubation The pertubation to use. Either 'none' (default), 'normal', or 'fractal'. De-
fines the displacement (warping) of the noise, with 'normal' giving a smooth
warping and 'fractal' giving a more eratic warping.

pertubation_amplitude

The maximal pertubation distance from the origin. Ignored if pertubation =
'none'. Defaults to 1.

x, y, z Coordinates to get noise value from

seed The seed to use for the noise. If NULL a random seed will be used

... ignored

Value

For noise_perlin() a matrix if length(dim) == 2 or an array if length(dim) == 3. For gen_perlin()
a numeric vector matching the length of the input.

References

Perlin, Ken (1985). An Image Synthesizer. SIGGRAPH Comput. Graph. 19 (0097-8930): 287–296.
doi:10.1145/325165.325247.

18 noise_simplex

Examples

Basic use
noise <- noise_perlin(c(100, 100))

plot(as.raster(normalise(noise)))

Using the generator
grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))
grid$noise <- gen_perlin(grid$x, grid$y)
plot(grid, noise)

noise_simplex Simplex noise generator

Description

Simplex noise has been developed by Ken Perlin, the inventor of perlin noise, in order to address
some of the shortcomings he saw in perlin noise. Compared to perlin noise, simplex noise has
lower computational complexity, making it feasable for dimensions above 3 and has no directional
artifacts.

Usage

noise_simplex(
dim,
frequency = 0.01,
interpolator = "quintic",
fractal = "fbm",
octaves = 3,
lacunarity = 2,
gain = 0.5,
pertubation = "none",
pertubation_amplitude = 1

)

gen_simplex(x, y = NULL, z = NULL, t = NULL, frequency = 1, seed = NULL, ...)

Arguments

dim The dimensions (height, width, (and depth, (and time))) of the noise to be gen-
erated. The length determines the dimensionality of the noise.

frequency Determines the granularity of the features in the noise.

interpolator How should values between sampled points be calculated? Either 'linear',
'hermite', or 'quintic' (default), ranging from lowest to highest quality.

noise_simplex 19

fractal The fractal type to use. Either 'none', 'fbm' (default), 'billow', or 'rigid-multi'.
It is suggested that you experiment with the different types to get a feel for how
they behaves.

octaves The number of noise layers used to create the fractal noise. Ignored if fractal
= 'none'. Defaults to 3.

lacunarity The frequency multiplier between successive noise layers when building fractal
noise. Ignored if fractal = 'none'. Defaults to 2.

gain The relative strength between successive noise layers when building fractal noise.
Ignored if fractal = 'none'. Defaults to 0.5.

pertubation The pertubation to use. Either 'none' (default), 'normal', or 'fractal'. De-
fines the displacement (warping) of the noise, with 'normal' giving a smooth
warping and 'fractal' giving a more eratic warping.

pertubation_amplitude

The maximal pertubation distance from the origin. Ignored if pertubation =
'none'. Defaults to 1.

x, y, z, t Coordinates to get noise value from

seed The seed to use for the noise. If NULL a random seed will be used

... ignored

Value

For noise_simplex() a matrix if length(dim) == 2 or an array if length(dim) >= 3. For gen_simplex()
a numeric vector matching the length of the input.

References

Ken Perlin, (2001) Noise hardware. In Real-Time Shading SIGGRAPH Course Notes, Olano M.,
(Ed.)

Examples

Basic use
noise <- noise_simplex(c(100, 100))

plot(as.raster(normalise(noise)))

Using the generator
grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))
grid$noise <- gen_simplex(grid$x, grid$y)
plot(grid, noise)

20 noise_value

noise_value Value noise generator

Description

Value noise is a simpler version of cubic noise that uses linear interpolation between neighboring
grid points. This creates a more distinct smooth checkerboard pattern than cubic noise, where
interpolation takes all the surrounding grid points into accout.

Usage

noise_value(
dim,
frequency = 0.01,
interpolator = "quintic",
fractal = "fbm",
octaves = 3,
lacunarity = 2,
gain = 0.5,
pertubation = "none",
pertubation_amplitude = 1

)

gen_value(
x,
y = NULL,
z = NULL,
frequency = 1,
seed = NULL,
interpolator = "quintic",
...

)

Arguments

dim The dimensions (height, width, (and depth)) of the noise to be generated. The
length determines the dimensionality of the noise.

frequency Determines the granularity of the features in the noise.

interpolator How should values between sampled points be calculated? Either 'linear',
'hermite', or 'quintic' (default), ranging from lowest to highest quality.

fractal The fractal type to use. Either 'none', 'fbm' (default), 'billow', or 'rigid-multi'.
It is suggested that you experiment with the different types to get a feel for how
they behaves.

octaves The number of noise layers used to create the fractal noise. Ignored if fractal
= 'none'. Defaults to 3.

noise_white 21

lacunarity The frequency multiplier between successive noise layers when building fractal
noise. Ignored if fractal = 'none'. Defaults to 2.

gain The relative strength between successive noise layers when building fractal noise.
Ignored if fractal = 'none'. Defaults to 0.5.

pertubation The pertubation to use. Either 'none' (default), 'normal', or 'fractal'. De-
fines the displacement (warping) of the noise, with 'normal' giving a smooth
warping and 'fractal' giving a more eratic warping.

pertubation_amplitude

The maximal pertubation distance from the origin. Ignored if pertubation =
'none'. Defaults to 1.

x, y, z Coordinates to get noise value from

seed The seed to use for the noise. If NULL a random seed will be used

... ignored

Value

For noise_value() a matrix if length(dim) == 2 or an array if length(dim) == 3. For gen_value()
a numeric vector matching the length of the input.

Examples

Basic use
noise <- noise_value(c(100, 100))

plot(as.raster(normalise(noise)))

Using the generator
grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))
grid$noise <- gen_value(grid$x, grid$y)
plot(grid, noise)

noise_white White noise generator

Description

White noise is a random noise with equal intensities at different frequencies. It is most well-known
as what appeared on old televisions when no signal was found.

Usage

noise_white(
dim,
frequency = 0.01,
pertubation = "none",

22 noise_worley

pertubation_amplitude = 1
)

gen_white(x, y = NULL, z = NULL, t = NULL, frequency = 1, seed = NULL, ...)

Arguments

dim The dimensions (height, width, (and depth, (and time))) of the noise to be gen-
erated. The length determines the dimensionality of the noise.

frequency Determines the granularity of the features in the noise.
pertubation The pertubation to use. Either 'none' (default), 'normal', or 'fractal'. De-

fines the displacement (warping) of the noise, with 'normal' giving a smooth
warping and 'fractal' giving a more eratic warping.

pertubation_amplitude

The maximal pertubation distance from the origin. Ignored if pertubation =
'none'. Defaults to 1.

x, y, z, t Coordinates to get noise value from
seed The seed to use for the noise. If NULL a random seed will be used
... ignored

Value

For noise_white() a matrix if length(dim) == 2 or an array if length(dim) >= 3. For gen_white()
a numeric vector matching the length of the input.

Examples

Basic use
noise <- noise_white(c(100, 100))

plot(as.raster(normalise(noise)))

Using the generator
grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))
grid$noise <- gen_white(grid$x, grid$y)
plot(grid, noise)

noise_worley Worley (cell) noise generator

Description

Worley noise, sometimes called cell (or cellular) noise, is quite distinct due to it’s kinship to voronoi
tesselation. It is created by sampling random points in space and then for any point in space measure
the distance to the closest point. The noise can be modified further by changing either the distance
measure or by combining multiple distances. The noise algorithm was developed by Steven Worley
in 1996 and has been used to simulated water and stone textures among other things.

noise_worley 23

Usage

noise_worley(
dim,
frequency = 0.01,
distance = "euclidean",
fractal = "none",
octaves = 3,
lacunarity = 2,
gain = 0.5,
value = "cell",
distance_ind = c(1, 2),
jitter = 0.45,
pertubation = "none",
pertubation_amplitude = 1

)

gen_worley(
x,
y = NULL,
z = NULL,
frequency = 1,
seed = NULL,
distance = "euclidean",
value = "cell",
distance_ind = c(1, 2),
jitter = 0.45,
...

)

Arguments

dim The dimensions (height, width, (and depth)) of the noise to be generated. The
length determines the dimensionality of the noise.

frequency Determines the granularity of the features in the noise.

distance The distance measure to use, either 'euclidean' (default), 'manhattan', or
'natural' (a mix of the two)

fractal The fractal type to use. Either 'none', 'fbm' (default), 'billow', or 'rigid-multi'.
It is suggested that you experiment with the different types to get a feel for how
they behaves.

octaves The number of noise layers used to create the fractal noise. Ignored if fractal
= 'none'. Defaults to 3.

lacunarity The frequency multiplier between successive noise layers when building fractal
noise. Ignored if fractal = 'none'. Defaults to 2.

gain The relative strength between successive noise layers when building fractal noise.
Ignored if fractal = 'none'. Defaults to 0.5.

value The noise value to return. Either

24 noise_worley

• 'value' (default) A random value associated with the closest point
• 'distance' The distance to the closest point
• 'distance2' The distance to the nth closest point (n given by distance_ind[1])
• 'distance2add' Addition of the distance to the nth and mth closest point

given in distance_ind

• 'distance2sub' Substraction of the distance to the nth and mth closest
point given in distance_ind

• 'distance2mul' Multiplication of the distance to the nth and mth closest
point given in distance_ind

• 'distance2div' Division of the distance to the nth and mth closest point
given in distance_ind

distance_ind Reference to the nth and mth closest points that should be used when calculating
value.

jitter The maximum distance a point can move from its start position during sampling
of cell points.

pertubation The pertubation to use. Either 'none' (default), 'normal', or 'fractal'. De-
fines the displacement (warping) of the noise, with 'normal' giving a smooth
warping and 'fractal' giving a more eratic warping.

pertubation_amplitude

The maximal pertubation distance from the origin. Ignored if pertubation =
'none'. Defaults to 1.

x, y, z Coordinates to get noise value from

seed The seed to use for the noise. If NULL a random seed will be used

... ignored

Value

For noise_worley() a matrix if length(dim) == 2 or an array if length(dim) == 3. For gen_worley()
a numeric vector matching the length of the input.

References

Worley, Steven (1996). A cellular texture basis function. Proceedings of the 23rd annual conference
on computer graphics and interactive techniques. pp. 291–294. ISBN 0-89791-746-4

Examples

Basic use
noise <- noise_worley(c(100, 100))

plot(as.raster(normalise(noise)))

Using the generator and another value metric
grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))
grid$noise <- gen_worley(grid$x, grid$y, value = 'distance')
plot(grid, noise)

ridged 25

ridged Ridged-Multi fractal

Description

This fractal is slightly more complex than the regular fbm() fractal. It uses the prior octave to
modify the values of the current octave before adding it to the cumulating values. The result of this
is that the final values will show steep hills and larger smooth areas, resembling mountain ranges.
This function is intended to be used in conjunction with fracture()

Usage

ridged(base, new, strength, octave, offset = 1, gain = 2, ...)

spectral_gain(h = 1, lacunarity = 2)

Arguments

base The prior values to modify

new The new values to modify base with

strength A value to modify new with before applying it to base

octave The current octave

offset The new values are first modified by (offset - abs(new))^2

gain A value to multiply the old octave by before using it to modify the new octave

... ignored

h Each successive gain is raised to the power of -h

lacunarity A multiplier to apply to the previous value before raising it to the power of -h

Details

The ridged fractal was designed with a slightly more complex gain sequence in mind, and while any
sequence or generator would work fracture() should be called with gain = spectral_gain() to
mimick the original intention of the fractal.

See Also

Other Fractal functions: billow(), clamped(), fbm()

Examples

grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))

grid$simplex <- fracture(gen_simplex, ridged, octaves = 8,
gain = spectral_gain(), x = grid$x, y = grid$y)

plot(grid, simplex)

26 trans_affine

trans_affine Apply linear transformation to a long_grid

Description

This function allows you to calculate linear transformations of coordinates in a long_grid object.
You can either pass in a transformation matrix or a trans object as produced by ggforce::linear_trans(...).
The latter makes it easy to stack multiple transformations into one, but require the ggforce package.

Usage

trans_affine(x, y, ...)

rotate(angle = 0)

stretch(x0 = 0, y0 = 0)

shear(x0 = 0, y0 = 0)

translate(x0 = 0, y0 = 0)

reflect(x0 = 0, y0 = 0)

Arguments

x, y The coordinates to transform

... A sequence of transformations

angle An angle in radians

x0 the transformation magnitude in the x-direction

y0 the transformation magnitude in the x-direction

Linear Transformations

The following transformation matrix constructors are supplied, but you can also provide your own
3x3 matrices to translate()

• rotate(): Rotate coordinates by angle (in radians) around the center counter-clockwise.

• stretch(): Stretches the x and/or y dimension by multiplying it with x0/y0.

• shear(): Shears the x and/or y dimension by x0/y0.

• translate(): Moves coordinates by x0/y0.

• reflect(): Reflects coordinates through the line that goes through 0, 0 and x0, y0.

trans_affine 27

Examples

grid <- long_grid(seq(1, 10, length.out = 1000), seq(1, 10, length.out = 1000))
grid$trans <- trans_affine(grid$x, grid$y, rotate(pi/3), shear(-2), rotate(-pi/3))
grid$chess <- gen_checkerboard(grid$trans$x, grid$trans$y)

plot(grid, chess)

Index

∗ Fractal functions
billow, 3
clamped, 4
fbm, 6
ridged, 25

∗ Pattern generators
gen_checkerboard, 8
gen_spheres, 9
gen_waves, 10

∗ derived values
curl_noise, 4
gradient_noise, 11

ambient (ambient-package), 2
ambient-package, 2
as.array.long_grid (long_grid), 12
as.matrix.long_grid (long_grid), 12
as.raster.long_grid (long_grid), 12

billow, 3, 4, 6, 25
billow(), 8
blend (modifications), 13

cap (modifications), 13
clamped, 3, 4, 6, 25
clamped(), 8
cos, 10
curl_noise, 4, 11

fbm, 3, 4, 6, 25
fbm(), 3, 4, 8, 25
fracture, 7
fracture(), 3–6, 11, 25

gen_checkerboard, 8, 9, 10
gen_cubic (noise_cubic), 15
gen_perlin (noise_perlin), 16
gen_simplex, 5, 11
gen_simplex (noise_simplex), 18
gen_spheres, 8, 9, 10
gen_spheres(), 10

gen_value (noise_value), 20
gen_waves, 8, 9, 10
gen_white (noise_white), 21
gen_worley (noise_worley), 22
gradient_noise, 5, 11
grid_cell (long_grid), 12

long_grid, 12

modifications, 13

noise_blue, 14
noise_cubic, 15
noise_perlin, 16
noise_simplex, 18
noise_value, 20
noise_white, 21
noise_worley, 22
normalise (modifications), 13
normalize (modifications), 13

reflect (trans_affine), 26
ridged, 3, 4, 6, 25
ridged(), 7, 8
rigid (ridged), 25
rigid-multi (ridged), 25
rotate (trans_affine), 26

shear (trans_affine), 26
slice_at (long_grid), 12
spectral_gain (ridged), 25
stretch (trans_affine), 26

trans_affine, 26
translate (trans_affine), 26

28

	ambient-package
	billow
	clamped
	curl_noise
	fbm
	fracture
	gen_checkerboard
	gen_spheres
	gen_waves
	gradient_noise
	long_grid
	modifications
	noise_blue
	noise_cubic
	noise_perlin
	noise_simplex
	noise_value
	noise_white
	noise_worley
	ridged
	trans_affine
	Index

