
Package: tweenr (via r-universe)
August 24, 2024

Type Package

Title Interpolate Data for Smooth Animations

Version 2.0.3.9000

Maintainer Thomas Lin Pedersen <thomasp85@gmail.com>

Description In order to create smooth animation between states of
data, tweening is necessary. This package provides a range of
functions for creating tweened data that can be used as basis
for animation. Furthermore it adds a number of vectorized
interpolaters for common R data types such as numeric, date and
colour.

URL https://github.com/thomasp85/tweenr

BugReports https://github.com/thomasp85/tweenr/issues

License MIT + file LICENSE

Encoding UTF-8

Depends R (>= 3.2.0)

Imports farver, magrittr, rlang, vctrs

LinkingTo cpp11 (>= 0.4.2)

RoxygenNote 7.2.3

Roxygen list(markdown=TRUE)

Suggests testthat, covr

Repository https://thomasp85.r-universe.dev

RemoteUrl https://github.com/thomasp85/tweenr

RemoteRef HEAD

RemoteSha 5f4ceb8a0d090142ec8da76b4c14e49d3573737e

Contents
tweenr-package . 2
display_ease . 3

1

https://github.com/thomasp85/tweenr
https://github.com/thomasp85/tweenr/issues

2 tweenr-package

gen_along . 4
gen_at . 5
gen_components . 6
gen_events . 7
gen_keyframe . 9
get_frame . 11
tween . 12
tween_along . 14
tween_appear . 15
tween_at . 16
tween_at_t . 16
tween_components . 17
tween_elements . 19
tween_events . 20
tween_fill . 21
tween_state . 22
tween_states . 24

Index 26

tweenr-package tweenr: Interpolate Data for Smooth Animations

Description

In order to create smooth animation between states of data, tweening is necessary. This package
provides a range of functions for creating tweened data that can be used as basis for animation.
Furthermore it adds a number of vectorized interpolaters for common R data types such as numeric,
date and colour.

Details

tweenr is a small collection of functions to help you in creating intermediary representations of your
data, i.e. interpolating states of data. As such it’s a great match for packages such as animate and
gganimate, since it can work directly with data.frames of data, but it also provide fast and efficient
interpolaters for numeric, date, datetime and colour that are vectorized and thus more efficient to use
than the build in interpolation functions (mainly stats::approx() and grDevices::colorRamp()).

The main functions for data.frames are tween_states(), tween_elements() and tween_appear(),
while the standard interpolaters can be found at tween()

Author(s)

Maintainer: Thomas Lin Pedersen <thomasp85@gmail.com> (ORCID)

https://orcid.org/0000-0002-5147-4711

display_ease 3

See Also

Useful links:

• https://github.com/thomasp85/tweenr

• Report bugs at https://github.com/thomasp85/tweenr/issues

display_ease Display an easing function

Description

This simple helper lets you explore how the different easing functions govern the interpolation of
data.

Usage

display_ease(ease)

Arguments

ease The name of the easing function to display (see details)

Details

How transitions proceed between states are defined by an easing function. The easing function
converts the parameterized progression from one state to the next to a new number between 0 and
1. linear easing is equivalent to an identity function that returns the input unchanged. In addition
there are a range of additional easers available, each with three modifiers.

Easing modifiers:

-in The easing function is applied as-is
-out The easing function is applied in reverse
-in-out The first half of the transition it is applied as-is, while in the last half it is reversed

Easing functions

quadratic Models a power-of-2 function
cubic Models a power-of-3 function
quartic Models a power-of-4 function
quintic Models a power-of-5 function
sine Models a sine function
circular Models a pi/2 circle arc
exponential Models an exponential function
elastic Models an elastic release of energy
back Models a pullback and relase
bounce Models the bouncing of a ball

In addition to this function a good animated explanation can be found here.

https://github.com/thomasp85/tweenr
https://github.com/thomasp85/tweenr/issues
https://easings.net

4 gen_along

Value

This function is called for its side effects

Examples

The default - identity
display_ease('linear')

A more fancy easer
display_ease('elastic-in')

gen_along Generator for tweening along a variable

Description

This is a generator version of tween_along(). It returns a generator that can be used with get_frame()
and get_raw_frames() to extract frames for a specific time point scaled between 0 and 1.

Usage

gen_along(
.data,
ease,
along,
id = NULL,
range = NULL,
history = TRUE,
keep_last = FALSE

)

Arguments

.data A data.frame with components at different stages

ease The easing function to use. Either a single string or one for each column in the
data set.

along The "time" point for each row

id An unquoted expression giving the component id for each row. Will be evaluated
in the context of .data so can refer to a column from that

range The range of time points to include in the tween. If NULL it will use the range of
time

history Should earlier datapoints be kept in subsequent frames

keep_last Should the last point of each id be kept beyond its time

gen_at 5

Value

An along_generator object

See Also

Other Other generators: gen_at(), gen_components(), gen_events(), gen_keyframe()

Examples

Default behaviour
gen <- gen_along(airquality, ease = "linear", along = Day, id = Month)
get_frame(gen, 0.22)

Overwrite keep_last or history in get_frame
get_frame(gen, 0.67, history = FALSE)

gen_at Generator for interpolating between two data frames

Description

This is a generator version of tween_at() with the additional functionality of supporting enter and
exit functions. It returns a generator that can be used with get_frame() and get_raw_frames() to
extract frames for a specific time point scaled between 0 and 1.

Usage

gen_at(from, to, ease, id = NULL, enter = NULL, exit = NULL)

Arguments

from, to A data.frame or vector of the same type. If either is of length/nrow 1 it will get
repeated to match the length of the other

ease A character vector giving valid easing functions. Recycled to match the ncol of
from

id The column to match observations on. If NULL observations will be matched by
position. See the Match, Enter, and Exit section for more information.

enter, exit functions that calculate a start state for new observations that appear in to or
an end state for observations that are not present in to. If NULL the new/old
observations will not be part of the tween. The function gets a data.frame with
either the start state of the exiting observations, or the end state of the entering
observations and must return a modified version of that data.frame. See the
Match, Enter, and Exit section for more information.

Value

A keyframe_generator object

6 gen_components

See Also

Other Other generators: gen_along(), gen_components(), gen_events(), gen_keyframe()

Examples

gen <- gen_at(mtcars[1:6,], mtcars[6:1,], 'cubic-in-out')

get_frame(gen, 0.3)

gen_components Generator for tweening components separately from each other

Description

This is a generator versions of tween_components(). It returns a generator that can be used with
get_frame() and get_raw_frames() to extract frames for a specific time point scaled between 0
and 1.

Usage

gen_components(
.data,
ease,
nframes,
time,
id = NULL,
range = NULL,
enter = NULL,
exit = NULL,
enter_length = 0,
exit_length = 0

)

Arguments

.data A data.frame with components at different stages

ease The easing function to use. Either a single string or one for each column in the
data set.

nframes The number of frames to calculate for the tween

time An unquoted expression giving the timepoint for the different stages of the com-
ponents. Will be evaluated in the context of .data so can refer to a column from
that

id An unquoted expression giving the component id for each row. Will be evaluated
in the context of .data so can refer to a column from that

range The range of time points to include in the tween. If NULL it will use the range of
time

gen_events 7

enter, exit functions that calculate a start state for new observations that appear in to or
an end state for observations that are not present in to. If NULL the new/old
observations will not be part of the tween. The function gets a data.frame with
either the start state of the exiting observations, or the end state of the entering
observations and must return a modified version of that data.frame. See the
Match, Enter, and Exit section for more information.

enter_length, exit_length
The lenght of the opening and closing transitions if enter and/or exit is given.
Measured in the same units as time

Value

A component_generator object

See Also

Other Other generators: gen_along(), gen_at(), gen_events(), gen_keyframe()

Examples

from_zero <- function(x) {x$x <- 0; x}

data <- data.frame(
x = c(1, 2, 2, 1, 2, 2),
y = c(1, 2, 2, 2, 1, 1),
time = c(1, 4, 8, 4, 8, 10),
id = c(1, 1, 1, 2, 2, 2)

)

gen <- gen_components(data, 'cubic-in-out', time = time, id = id,
enter = from_zero, enter_length = 4)

get_frame(gen, 0.3)

gen_events Generator for tweening the appearance of elements

Description

This is a generator version of tween_events(). It returns a generator that can be used with
get_frame() and get_raw_frames() to extract frames for a specific time point scaled between
0 and 1.

Usage

gen_events(
.data,
ease,

8 gen_events

start,
end = NULL,
range = NULL,
enter = NULL,
exit = NULL,
enter_length = 0,
exit_length = 0

)

Arguments

.data A data.frame with components at different stages

ease The easing function to use. Either a single string or one for each column in the
data set.

start, end The start (and potential end) of the event encoded in the row, as unquoted ex-
pressions. Will be evaluated in the context of .data so can refer to columns in
it. If end = NULL the event will be without extend and only visible in a single
frame, unless enter and/or exit is given.

range The range of time points to include in the tween. If NULL it will use the range of
time

enter, exit functions that calculate a start state for new observations that appear in to or
an end state for observations that are not present in to. If NULL the new/old
observations will not be part of the tween. The function gets a data.frame with
either the start state of the exiting observations, or the end state of the entering
observations and must return a modified version of that data.frame. See the
Match, Enter, and Exit section for more information.

enter_length, exit_length
The lenght of the opening and closing transitions if enter and/or exit is given.
Measured in the same units as time

Value

A component_generator object

See Also

Other Other generators: gen_along(), gen_at(), gen_components(), gen_keyframe()

Examples

d <- data.frame(
x = runif(20),
y = runif(20),
time = runif(20),
duration = runif(20, max = 0.1)

)
from_left <- function(x) {

x$x <- -0.5
x

gen_keyframe 9

}
to_right <- function(x) {

x$x <- 1.5
x

}

gen <- gen_events(d, 'cubic-in-out', start = time, end = time + duration,
enter = from_left, exit = to_right, enter_length = 0.1,
exit_length = 0.05)

get_frame(gen, 0.65)

gen_keyframe Generator for keyframe based tweening

Description

This is a generator version of tween_state() and its utility functions. It returns a generator that
can be used with get_frame() and get_raw_frames() to extract frames for a specific time point
scaled between 0 and 1.

Usage

gen_keyframe(keyframe = NULL, pause = 0)

add_pause(.data, pause = 0)

add_keyframe(
.data,
keyframe,
ease,
length,
id = NULL,
enter = NULL,
exit = NULL

)

Arguments

keyframe A data frame to use as a keyframe state

pause The length of the pause at the current keyframe

.data A data.frame to start from. If .data is the result of a prior tween, only the last
frame will be used for the tween. The new tween will then be added to the prior
tween

ease The easing function to use. Either a single string or one for each column in the
data set.

10 gen_keyframe

length The length of the transition

id The column to match observations on. If NULL observations will be matched by
position. See the Match, Enter, and Exit section for more information.

enter, exit functions that calculate a start state for new observations that appear in to or
an end state for observations that are not present in to. If NULL the new/old
observations will not be part of the tween. The function gets a data.frame with
either the start state of the exiting observations, or the end state of the entering
observations and must return a modified version of that data.frame. See the
Match, Enter, and Exit section for more information.

Value

A keyframe_generator object

See Also

Other Other generators: gen_along(), gen_at(), gen_components(), gen_events()

Examples

df1 <- data.frame(
country = c('Denmark', 'Sweden', 'Norway'),
population = c(5e6, 10e6, 3.5e6)

)
df2 <- data.frame(

country = c('Denmark', 'Sweden', 'Norway', 'Finland'),
population = c(6e6, 10.5e6, 4e6, 3e6)

)
df3 <- data.frame(

country = c('Denmark', 'Norway'),
population = c(10e6, 6e6)

)
to_zero <- function(x) {

x$population <- 0
x

}
gen <- gen_keyframe(df1, 10) %>%

add_keyframe(df2, 'cubic-in-out', 35, id = country, enter = to_zero) %>%
add_pause(10) %>%
add_keyframe(df3, 'cubic-in-out', 35, id = country, enter = to_zero,

exit = to_zero) %>%
add_pause(10)

get_frame(gen, 0.25)

get_frame 11

get_frame Extract a frame from a generator

Description

Using the generators in tweenr you can avoid calculating all needed frames up front, which can
be prohibitive in memory. With a generator you can use get_frame() to extract any frame at a
fractional location between 0 and 1 one by one as you need them. You can further get all raw data
before and/or after a given point in time using get_raw_frames().

Usage

get_frame(generator, at, ...)

get_raw_frames(generator, at, before = 0, after = 0, ...)

Arguments

generator A frame_generator object

at A scalar numeric between 0 and 1

... Arguments passed on to methods

before, after Scalar numerics that define the time before and after at to search for raw data

Examples

data <- data.frame(
x = c(1, 2, 2, 1, 2, 2),
y = c(1, 2, 2, 2, 1, 1),
time = c(1, 4, 8, 4, 8, 10),
id = c(1, 1, 1, 2, 2, 2)

)

gen <- gen_components(data, 'cubic-in-out', time = time, id = id)

get_frame(gen, 0.3)

get_raw_frames(gen, 0.5, before = 0.5, after = 0.2)

12 tween

tween Create simple tweens

Description

This set of functions can be used to interpolate between single data types, i.e. data not part of
data.frames but stored in vectors. All functions come in two flavours: the standard and a *_t version.
The standard reads the data as a list of states, each tween matched element-wise from state to state.
The *_t version uses the transposed representation where each element is a vector of states. The
standard approach can be used when each tween has the same number of states and you want to
control the number of point in each state transition. The latter is useful when each tween consists
of different numbers of states and/or you want to specify the total number of points for each tween.

Usage

tween(data, n, ease = "linear")

tween_t(data, n, ease = "linear")

tween_colour(data, n, ease = "linear")

tween_color(data, n, ease = "linear")

tween_colour_t(data, n, ease = "linear")

tween_color_t(data, n, ease = "linear")

tween_constant(data, n, ease = "linear")

tween_constant_t(data, n, ease = "linear")

tween_date(data, n, ease = "linear")

tween_date_t(data, n, ease = "linear")

tween_datetime(data, n, ease = "linear")

tween_datetime_t(data, n, ease = "linear")

tween_numeric(data, n, ease = "linear")

tween_numeric_t(data, n, ease = "linear")

Arguments

data A list of vectors or a single vector. In the standard functions each element in
the list must be of equal length; for the *_t functions lengths can differ. If a

tween 13

single vector is used it will be eqivalent to using as.list(data) for the standard
functions and list(data) for the *_t functions.

n The number of elements per transition or tween. See details

ease The easing function to use for each transition or tween. See details. Defaults to
'linear'

Details

tween and tween_t are wrappers around the other functions that tries to guess the type of input
data and choose the appropriate tween function. Unless you have data that could be understood as
a colour but is in fact a character vector it should be safe to use these wrappers. It is probably safer
and more verbose to use the explicit functions within package code as they circumvent the type
inference and checks whether the input data matches the tween function.

tween_numeric will provide a linear interpolation between the points based on the sequence re-
turned by the easing function. tween_date and tween_datetime converts to numeric, produces
the tweening, and converts back again. tween_colour converts colours into Lab and does the inter-
polation there, converting back to sRGB after the tweening is done. tween_constant is a catchall
that converts the input into character and interpolates by switching between states halfway through
the transition.

The meaning of the n and ease arguments differs somewhat between the standard and *_t versions
of the functions. In the standard function n and ease refers to the length and easing function of
each transition, being recycled if necessary to length(data) - 1. In the *_t functions n and ease
refers to the total length of each tween and the easing function to be applied to all transition for each
tween. The will both be recycled to length(data).

Value

A list with an element for each tween. That means that the length of the return is equal to the
length of the elements in data for the standard functions and equal to the length of data for the *_t
functions.

Difference Between tween_numeric and approx()

tween_numeric (and tween_numeric_t) is superficially equivalent to stats::approx(), but there
are differences. stats::approx() will create evenly spaced points, at the expense of not includ-
ing the actual points in the input, while the reverse is true for tween_numeric. Apart from that
tween_numeric of course supports easing functions and is vectorized.

Examples

tween_numeric(list(1:3, 10:8, c(20, 60, 30)), 10)

tween_colour_t(list(colours()[1:4], colours()[1:2], colours()[25:100]), 100)

14 tween_along

tween_along Interpolate data along a given dimension

Description

This tween takes groups of rows along with the time for each row and calculates the exact value
at each at each frame. Further it allows for keeping the subsequent raw data from previous frame
as well as letting the final row linger beyond its time. It especially useful for data that should
be visualised as lines that are drawn along the x-axis, but can of course also be used for other
dimensions as well (even dimensions not corresponding to any axis).

Usage

tween_along(
.data,
ease,
nframes,
along,
id = NULL,
range = NULL,
history = TRUE,
keep_last = FALSE

)

Arguments

.data A data.frame with components at different stages

ease The easing function to use. Either a single string or one for each column in the
data set.

nframes The number of frames to calculate for the tween

along The "time" point for each row

id An unquoted expression giving the component id for each row. Will be evaluated
in the context of .data so can refer to a column from that

range The range of time points to include in the tween. If NULL it will use the range of
time

history Should earlier datapoints be kept in subsequent frames

keep_last Should the last point of each id be kept beyond its time

Value

A data.frame with the same columns as .data along with .id giving the component id, .phase
giving the state of each component in each frame, and .frame giving the frame membership of
each row.

tween_appear 15

See Also

Other data.frame tween: tween_appear(), tween_components(), tween_elements(), tween_events(),
tween_states()

tween_appear Tween a data.frame of appearances

Description

This function is intended for use when you have a data.frame of events at different time points. This
could be the appearance of an observation for example. This function replicates your data nframes
times and calculates the duration of each frame. At each frame each row is assigned an age based
on the progression of frames and the entry point of in time for that row. A negative age means that
the row has not appeared yet.

Usage

tween_appear(data, time, timerange, nframes)

Arguments

data A data.frame to tween
time The name of the column that holds the time dimension. This does not need to

hold time data in the strictest sence - any numerical type will do
timerange The range of time to create the tween for. If missing it will defaults to the range

of the time column
nframes The number of frames to create for the tween. If missing it will create a frame

for each full unit in timerange (e.g. timerange = c(1, 10) will give nframes
= 10)

Value

A data.frame as data but repeated nframes times and with the additional columns .age and .frame

See Also

Other data.frame tween: tween_along(), tween_components(), tween_elements(), tween_events(),
tween_states()

Examples

data <- data.frame(
x = rnorm(100),
y = rnorm(100),
time = sample(50, 100, replace = TRUE)

)

data <- tween_appear(data, 'time', nframes = 200)

16 tween_at_t

tween_at Get a specific position between two states

Description

This tween allows you to query a specific postion between two states rather than generate evenly
spaced states. It can work with either data.frames or single vectors and each row/element can have
its own position and easing.

Usage

tween_at(from, to, at, ease)

Arguments

from, to A data.frame or vector of the same type. If either is of length/nrow 1 it will get
repeated to match the length of the other

at A numeric between 0 and 1 recycled to match the nrow/length of from

ease A character vector giving valid easing functions. Recycled to match the ncol of
from

Value

If from/to is a data.frame then a data.frame with the same columns. If from/to is a vector then a
vector.

Examples

tween_at(mtcars[1:6,], mtcars[6:1,], runif(6), 'cubic-in-out')

tween_at_t Get several specific position between two states

Description

This tween is a variation of tween_at(). Instead of having at refer to the tweening position of each
row, each at will interpolate the full data at that position.

Usage

tween_at_t(from, to, at, ease)

tween_components 17

Arguments

from, to A data.frame or vector of the same type. If either is of length/nrow 1 it will get
repeated to match the length of the other

at A numeric vector with values between 0 and 1.

ease A character vector giving valid easing functions. Recycled to match the ncol of
from

Value

If from/to is a data.frame then a data.frame with the same columns. If from/to is a vector then a
vector.

Examples

tween_at_t(mtcars[1:6,], mtcars[6:1,], runif(3), 'cubic-in-out')

tween_components Interpolate individual component

Description

This function is much like tween_elements() but with a slightly different syntax and support
for many of the newer features such as enter/exits and tween phase identification. Furthermore
it uses tidy evaluation for time and id, making it easier to change these on the fly. The biggest
change in terms of functionality compared to tween_elements() is that the easing function is now
given per column and not per row. If different easing functions are needed for each transition then
tween_elements() is needed.

Usage

tween_components(
.data,
ease,
nframes,
time,
id = NULL,
range = NULL,
enter = NULL,
exit = NULL,
enter_length = 0,
exit_length = 0

)

18 tween_components

Arguments

.data A data.frame with components at different stages

ease The easing function to use. Either a single string or one for each column in the
data set.

nframes The number of frames to calculate for the tween

time An unquoted expression giving the timepoint for the different stages of the com-
ponents. Will be evaluated in the context of .data so can refer to a column from
that

id An unquoted expression giving the component id for each row. Will be evaluated
in the context of .data so can refer to a column from that

range The range of time points to include in the tween. If NULL it will use the range of
time

enter, exit functions that calculate a start state for new observations that appear in to or
an end state for observations that are not present in to. If NULL the new/old
observations will not be part of the tween. The function gets a data.frame with
either the start state of the exiting observations, or the end state of the entering
observations and must return a modified version of that data.frame. See the
Match, Enter, and Exit section for more information.

enter_length, exit_length
The lenght of the opening and closing transitions if enter and/or exit is given.
Measured in the same units as time

Value

A data.frame with the same columns as .data along with .id giving the component id, .phase
giving the state of each component in each frame, and .frame giving the frame membership of
each row.

See Also

Other data.frame tween: tween_along(), tween_appear(), tween_elements(), tween_events(),
tween_states()

Examples

from_zero <- function(x) {x$x <- 0; x}

data <- data.frame(
x = c(1, 2, 2, 1, 2, 2),
y = c(1, 2, 2, 2, 1, 1),
time = c(1, 4, 10, 4, 8, 10),
id = c(1, 1, 1, 2, 2, 2)

)

data <- tween_components(data, 'cubic-in-out', nframes = 100, time = time,
id = id, enter = from_zero, enter_length = 4)

tween_elements 19

tween_elements Create frames based on individual element states

Description

This function creates tweens for each observation individually, in cases where the data doesn’t pass
through collective states but consists of fully independent transitions. Each observation is identified
by an id and each state must have a time associated with it.

Usage

tween_elements(data, time, group, ease, timerange, nframes)

Arguments

data A data.frame consisting at least of a column giving the observation id, a column
giving timepoints for each state and a column giving the easing to apply when
transitioning away from the state.

time The name of the column holding timepoints
group The name of the column holding the observation id
ease The name of the column holding the easing function name
timerange The range of time to span. If missing it will default to range(data[[time]])

nframes The number of frames to generate. If missing it will default to ceiling(diff(timerange)
+ 1) (At least one frame for each individual timepoint)

Value

A data.frame with the same columns as data except for the group and ease columns, but replicated
nframes times. Two additional columns called .frame and .group will be added giving the frame
number and observation id for each row.

See Also

Other data.frame tween: tween_along(), tween_appear(), tween_components(), tween_events(),
tween_states()

Examples

data <- data.frame(
x = c(1, 2, 2, 1, 2, 2),
y = c(1, 2, 2, 2, 1, 1),
time = c(1, 4, 10, 4, 8, 10),
group = c(1, 1, 1, 2, 2, 2),
ease = rep('cubic-in-out', 6)

)

data <- tween_elements(data, 'time', 'group', 'ease', nframes = 100)

20 tween_events

tween_events Transition in and out of events

Description

This tweening function is a more powerful version of tween_appear(), with support for newer
features such as enter/exits and tween phase identification. The tweener treats each row in the data
as unique events in time, and creates frames with the correct events present at any given time.

Usage

tween_events(
.data,
ease,
nframes,
start,
end = NULL,
range = NULL,
enter = NULL,
exit = NULL,
enter_length = 0,
exit_length = 0

)

Arguments

.data A data.frame with components at different stages

ease The easing function to use. Either a single string or one for each column in the
data set.

nframes The number of frames to calculate for the tween

start, end The start (and potential end) of the event encoded in the row, as unquoted ex-
pressions. Will be evaluated in the context of .data so can refer to columns in
it. If end = NULL the event will be without extend and only visible in a single
frame, unless enter and/or exit is given.

range The range of time points to include in the tween. If NULL it will use the range of
time

enter, exit functions that calculate a start state for new observations that appear in to or
an end state for observations that are not present in to. If NULL the new/old
observations will not be part of the tween. The function gets a data.frame with
either the start state of the exiting observations, or the end state of the entering
observations and must return a modified version of that data.frame. See the
Match, Enter, and Exit section for more information.

enter_length, exit_length
The lenght of the opening and closing transitions if enter and/or exit is given.
Measured in the same units as time

tween_fill 21

Value

A data.frame with the same columns as .data along with .id giving the component id, .phase
giving the state of each component in each frame, and .frame giving the frame membership of
each row.

See Also

Other data.frame tween: tween_along(), tween_appear(), tween_components(), tween_elements(),
tween_states()

Examples

d <- data.frame(
x = runif(20),
y = runif(20),
time = runif(20),
duration = runif(20, max = 0.1)

)
from_left <- function(x) {

x$x <- -0.5
x

}
to_right <- function(x) {

x$x <- 1.5
x

}

tween_events(d, 'cubic-in-out', 50, start = time, end = time + duration,
enter = from_left, exit = to_right, enter_length = 0.1,
exit_length = 0.05)

tween_fill Fill out missing values by interpolation

Description

This tween fills out NA elements (or NULL elements if data is a list) by interpolating between the
prior and next non-missing values.

Usage

tween_fill(data, ease)

Arguments

data A data.frame or vector.

ease A character vector giving valid easing functions. Recycled to match the ncol of
data

22 tween_state

Value

If data is a data.frame then a data.frame with the same columns. If data is a vector then a vector.

Examples

Single vector
tween_fill(c(1, NA, NA, NA, NA, NA, 2, 6, NA, NA, NA, -2), 'cubic-in-out')

Data frame
tween_fill(mtcars[c(1, NA, NA, NA, NA, 4, NA, NA, NA, 10),], 'cubic-in')

tween_state Compose tweening between states

Description

The tween_state() is a counterpart to tween_states() that is aimed at letting you gradually build
up a scene by composing state changes one by one. This setup lets you take more control over each
state change and allows you to work with datasets with uneven number of rows, flexibly specifying
what should happen with entering and exiting data. keep_state() is a simple helper for letting
you pause at a state. open_state() is a shortcut from tweening from an empty dataset with a given
enter() function while close_state() is the same but will instead tween into an empty dataset
with a given exit() function.

Usage

tween_state(.data, to, ease, nframes, id = NULL, enter = NULL, exit = NULL)

keep_state(.data, nframes)

open_state(.data, ease, nframes, enter)

close_state(.data, ease, nframes, exit)

Arguments

.data A data.frame to start from. If .data is the result of a prior tween, only the last
frame will be used for the tween. The new tween will then be added to the prior
tween

to A data.frame to end at. It must contain the same columns as .data (exluding
.frame)

ease The easing function to use. Either a single string or one for each column in the
data set.

nframes The number of frames to calculate for the tween

tween_state 23

id The column to match observations on. If NULL observations will be matched by
position. See the Match, Enter, and Exit section for more information.

enter, exit functions that calculate a start state for new observations that appear in to or
an end state for observations that are not present in to. If NULL the new/old
observations will not be part of the tween. The function gets a data.frame with
either the start state of the exiting observations, or the end state of the entering
observations and must return a modified version of that data.frame. See the
Match, Enter, and Exit section for more information.

Value

A data.frame containing all the intermediary states in the tween, each state will be enumerated by
the .frame column

Match, Enter, and Exit

When there are discrepancies between the two states to tweeen between you need a way to resolve
the discrepancy before calculating the intermediary states. With discrepancies we mean that some
data points are present in the start state and not in the end state, and/or some are present in the end
state but not in the start state. A simple example is that the start state contains 100 rows and the
end state contains 70. There are 30 missing rows that we need to do something about before we can
calculate the tween.

Making pairs The first question to answer is "How do we know which observations are disappear-
ing (exiting) and/or appearing (entering)?". This is done with the id argument which should give a
column name to match rows between the two states on. If id = NULL the rows will be matched by
position (in the above example the last 30 rows in the start state will be entering). The id column
must only contain unique values in order to work.

Making up states Once the rows in each state has been paired you’ll end up with three sets of data.
One containing rows that is present in both the start and end state, one containing rows only present
in the start state, and one only containing rows present in the end state. The first group is easy -
here you just tween between each rows - but for the other two we’ll need some state to start or end
the tween with. This is really the purpose of the enter and exit functions. They take a data frame
containing the subset of data that has not been matched and must return a new data frame giving the
state that these rows must be tweened from/into. A simple example could be an enter function that
sets the variable giving the opacity in the plot to 0 - this will make the new points fade into view
during the transition.

Ignoring discrepancies The default values for enter and exit is NULL. This value indicate that
non-matching rows should simply be ignored for the transition and simply appear in the last frame
of the tween. This is the default.

Examples

data1 <- data.frame(
x = 1:20,
y = 0,
colour = 'forestgreen',
stringsAsFactors = FALSE

)

24 tween_states

data2 <- data1
data2$x <- 20:1
data2$y <- 1

data <- data1 %>%
tween_state(data2, 'linear', 50) %>%
keep_state(20) %>%
tween_state(data1, 'bounce-out', 50)

Using enter and exit (made up numbers)
df1 <- data.frame(

country = c('Denmark', 'Sweden', 'Norway'),
population = c(5e6, 10e6, 3.5e6)

)
df2 <- data.frame(

country = c('Denmark', 'Sweden', 'Norway', 'Finland'),
population = c(6e6, 10.5e6, 4e6, 3e6)

)
df3 <- data.frame(

country = c('Denmark', 'Norway'),
population = c(10e6, 6e6)

)
to_zero <- function(x) {

x$population <- 0
x

}
pop_devel <- df1 %>%

tween_state(df2, 'cubic-in-out', 50, id = country, enter = to_zero) %>%
tween_state(df3, 'cubic-in-out', 50, id = country, enter = to_zero,

exit = to_zero)

tween_states Tween a list of data.frames representing states

Description

This function is intended to create smooth transitions between states of data. States are defined
as full data.frames or data.frames containing only the columns with change. Each state can have
a defined period of pause, the transition length between each states can be defined as well as the
easing function.

Usage

tween_states(data, tweenlength, statelength, ease, nframes)

Arguments

data A list of data.frames. Each data.frame must contain the same number of rows,
but only the first data.frame needs to contain all columns. Subsequent data.frames
need only contain the columns that shows change.

tween_states 25

tweenlength The lengths of the transitions between each state.

statelength The length of the pause at each state.

ease The easing functions to use for the transitions. See details.

nframes The number of frames to generate. The actual number of frames might end up
being higher depending on the regularity of tweenlength and statelength.

Value

A data.frame with the same columns as the first data.frame in data, but replicated nframes times.
An additional column called .frame will be added giving the frame number.

See Also

Other data.frame tween: tween_along(), tween_appear(), tween_components(), tween_elements(),
tween_events()

Examples

data1 <- data.frame(
x = 1:20,
y = 0,
colour = 'forestgreen',
stringsAsFactors = FALSE

)
data2 <- data1
data2$x <- 20:1
data2$y <- 1

data <- tween_states(list(data1, data2), 3, 1, 'cubic-in-out', 100)

Index

∗ Other generators
gen_along, 4
gen_at, 5
gen_components, 6
gen_events, 7
gen_keyframe, 9

∗ data.frame tween
tween_along, 14
tween_appear, 15
tween_components, 17
tween_elements, 19
tween_events, 20
tween_states, 24

add_keyframe (gen_keyframe), 9
add_pause (gen_keyframe), 9

close_state (tween_state), 22

display_ease, 3

gen_along, 4, 6–8, 10
gen_at, 5, 5, 7, 8, 10
gen_components, 5, 6, 6, 8, 10
gen_events, 5–7, 7, 10
gen_keyframe, 5–8, 9
get_frame, 11
get_frame(), 4–7, 9
get_raw_frames (get_frame), 11
get_raw_frames(), 4–7, 9
grDevices::colorRamp(), 2

keep_state (tween_state), 22

open_state (tween_state), 22

stats::approx(), 2, 13

tween, 12
tween(), 2
tween_along, 14, 15, 18, 19, 21, 25

tween_along(), 4
tween_appear, 15, 15, 18, 19, 21, 25
tween_appear(), 2, 20
tween_at, 16
tween_at(), 5, 16
tween_at_t, 16
tween_color (tween), 12
tween_color_t (tween), 12
tween_colour (tween), 12
tween_colour_t (tween), 12
tween_components, 15, 17, 19, 21, 25
tween_components(), 6
tween_constant (tween), 12
tween_constant_t (tween), 12
tween_date (tween), 12
tween_date_t (tween), 12
tween_datetime (tween), 12
tween_datetime_t (tween), 12
tween_elements, 15, 18, 19, 21, 25
tween_elements(), 2, 17
tween_events, 15, 18, 19, 20, 25
tween_events(), 7
tween_fill, 21
tween_numeric (tween), 12
tween_numeric_t (tween), 12
tween_state, 22
tween_state(), 9
tween_states, 15, 18, 19, 21, 24
tween_states(), 2
tween_t (tween), 12
tweenr (tweenr-package), 2
tweenr-package, 2

26

	tweenr-package
	display_ease
	gen_along
	gen_at
	gen_components
	gen_events
	gen_keyframe
	get_frame
	tween
	tween_along
	tween_appear
	tween_at
	tween_at_t
	tween_components
	tween_elements
	tween_events
	tween_fill
	tween_state
	tween_states
	Index

